

Efficient Electrification: Opportunities and Challenges

Tom Wilson Principal Technical Executive, Integrated Grid and Energy Systems

Minnesota Electrification Stakeholder Meeting January 7, 2019

 Image: Market and the second secon

EPRI - Independent – Objective – Technically Based

BORN IN A BLACKOUT

EPRI'S VALUE

OUR MEMBERS...

Founded in 1972 as an independent, nonprofit center for public interest energy and environmental research

To provide value to the public, our members, and the electricity sector

THOUGHT LEADERSHIP

INDUSTRY EXPERTISE

COLLABORATIVE MODEL

- 450+ participants in more than 30 countries
- EPRI members generate approximately 90% of the electricity in the United States
- International funding nearly 25% of EPRI's research, development, and demonstrations
- \$415M Annual funding

New York City, The Great Northeast Blackout, 1965

Topics for Today

Analysis – EPRI's US National Electrification Assessment

US Regional Perspectives

Regulation -- Updating measures of costs and benefits

Minnesota Perspectives

Concluding Remarks

Electricity Use Has Grown Faster than Total Energy for More than A Century... What Will Happen Next? Or Could Happen?

ELECTRICITY'S SHARE OF TOTAL ENERGY CONSUMPTION, BY SECTOR 1949-2015 (SOURCE: EIA AER 2016)

Historic growth driven by efficiency, convenience, safety, and low cost

Conventional Wisdom about Clean Energy is Rapidly Changing

Historic data from EIA Monthly Energy Review, February 2019

© 2020 Electric Power Research Institute, Inc. All rights reserved.

Efficient Electrification – "Sustainable" Opportunities

Airport/Port Electrification

Indoor Agriculture

Improve Productivity, Reduce Emissions, Reduce Cost, Deliver Other Non-Energy Benefits, and Give Customers Control

Advanced Manufacturing

End Use (Final) Energy Use By Sector

Quad BTUs

• Excludes upstream and midstream energy use, e.g., power generation, oil and gas extraction, refining, and pipelines. Adapted from Energy Information Administration

7

EPRI's U.S. National Electrification Assessment (USNEA)

- Economy-wide assessment:
 - Residential, commercial, industrial and transport
- Customers have broad technology choices and control
- Customer decisions integrated with detailed electricity supply model
- Just the beginning...

For more information on EPRI's Efficient Electrification Initiative: https://www.epri.com/#/pages/sa/efficientelectrification

EPRI's U.S. National Electrification Assessment Scenarios

CONSERVATIVE	Slower Technology Change	• Annual Energy Outlook 2017 growth path for economic growth (GDP), energy service
REFERENCE	Reference Technology	 demands, and primary fuel prices EPRI assumptions for cost
PROGRESSIVE	Reference Technology + Moderate Carbon Price	and performance of technologies and energy efficiency over time
TRANSFORMATION	Reference Technology + Stringent Carbon Price	 Existing state-level policies and targets

US-REGEN Couples Demand Simulation with Electric Generation

U.S. <u>R</u>egional <u>E</u>conomy, <u>G</u>reenhouse Gas, and <u>En</u>ergy

www.epri.com

Efficient Electrification: Reference Scenario

Efficient Electrification: Transformation (tight carbon target)

www.epri.com

U.S. National Electrification Assessment (USNEA) – Results

	***	(\mathbf{A})		CO2
SCENARIO (Electricity Portion of Final Energy in 2015 & 2050)	Total Final Energy	Electric Load	Natural Gas	Economy Wide
CONSERVATIVE (21% & 32%)	20%	24%	33%	1 9 %
REFERENCE (21% & 36%)	22%	32%	40%	20%
PROGRESSIVE (21% & 39%)	27%	35%	31%	57%
TRANSFORMATION (21% & 47%)	32%	52%	18%	67%

Current Load Shapes by End-Use

Projected Load Shapes by End-Use

Current Aggregate Load Shape

Projected Aggregate Load Shape

USNEA Assumed Exogenous Charging Profiles (i.e., uncoordinated)

www.epri.com

In a State-Level Study, Examined Impact of Coordinated Charging

www.epri.com

Load Shaping Can Reduce Peak Demand Issues

Electrification of heating and load suggests potential peak demand challenge

Impact of 50% participation in load management program – reduce peak by ~5GW

- Lowers heating peak
- Limits EV charging during heating peak

Key Take Away Messages from National Electrification Assessment

Electrification Trend Continues	Driven by technological change and consumer choice, further bolstered by policy	
		 BUI
Efficiency Increases Emissions Decrease	Efficient electrification + end-use efficiency lead to falling final energy use	The full potentia may not be
		realized without
Natural Gas Use Grows	Remains a key fuel for end-use and electric generation	deliberate and integrated
		decisions
System Impacts	Changing load shapes and new flexible loads create challenges and opportunities	

U.S. National Assessment is a Beginning... Many Potential Implications to Understand

End-user costs/benefits

Capital vs. operating costs
 Service/product quality and productivity

System costs/benefits

Generation, T&D capacity requirements
 Grid flexibility

Environmental costs/benefits CO₂, criteria pollutant emissions

Water resources, quality

Emerging Analytical Debate on Electrification

Despite lots of modeling detail, different messages driven primarily by questions asked

Important Perspectives When You Review a Report

- Purpose
 - Many explore possible futures
 - Others assess specific policies
- Scope
 - Economy-wide vs one sector vs one end-use.
 - Narrow focus can allow more detail, but can miss the big picture
- Assumptions about future electricity
- Technology availability, cost and performance
- Consumer's circumstance and options

Topics for Today

Analysis – EPRI's US National Electrification Assessment

US Regional Perspectives

Regulation -- Updated measures of costs and benefits

Minnesota Perspectives

Concluding Remarks

U.S. State & Utility Electrification Assessment Projects:

Opportunities and Challenges Differ by Energy Infrastructure, Economy, Policy, Climate...

Current U.S. Participation: 14 States with 17 Members ... plus Ontario and South Korea

Update: June 13, 2019

www.epri.com

© 2020 Electric Power Research Institute, Inc. All rights reserved.

Space Heating in 2015 – Colder vs. Milder Climates

80% fossil 10% heat pump

< 50% fossil 23% heat pump

www.epri.com

27

Projected Space Heating in 2030 – Colder vs. Milder Hard to Beat the Incumbent Technology

28

Although "Mature", Heat Pump Technology Poised for Dramatic Improvements

US National Electrification Assessment assumed current technologies. Near-term advances reduce cost and grid impacts and can improve resiliency

- Next Generation Variable Capacity Heat Pumps (VCHP)
 - Operate effectively to 5F and below (versus 30F typical today)
- Advanced Residential Heating Systems
 - Integrated operation of heat pump and backup
 - Smart-grid capabilities
 - With fossil backup and non-electric operation, can provide flexibility and resiliency

Source: Extreme Cold Weather and Heat Pumps (2019). EPRI Quick Insights 3002016792.

Topics for Today

Analysis – EPRI's US National Electrification Assessment

US Regional Perspectives

Regulation -- Updated measures of costs and benefits

Minnesota Perspectives

Concluding Remarks

Objectives for Cost-Effectiveness Framework

Defensible

Rooted in standard energy efficiency tests widely accepted by regulators

Rigorous

Comprehensive costs and benefits, e.g. societal impacts, grid impacts, and avoided costs beyond power sector

Applicable

Usable by utilities in regulatory filings to justify electrification programs

Flexible

Adaptable to any electrification program or locale

EPRI "Total Value Test"

- Energy efficiency cost-effectiveness metric, inclusive of electrification
- Amalgam of best attributes of standard energy efficiency tests implemented for decades
- Adapted and refined for more comprehensive benefits and costs characteristic of electrification, including environmental and grid impacts
- Objectively compares cost-effectiveness of electric, natural gas, and other options
- NOT pre-disposed to any particular fuel choice
- Published August 2019, available on EPRI.com

Standard energy efficiency cost-effectiveness tests do not adequately capture value of Electrification

Energy Efficiency Cost-Effectiveness Tests

Participant Cost

Total Resource Cost (TRC)

Ratepayer Impact Measure (RIM)

Utility / Program Administrator Cost

Societal Cost

Originally developed in California in 1980s Periodically tweaked but never overhauled Applied (unevenly) across states for decades Each test assumes a different point of view Incomplete treatment of utility system impacts

Asymmetrical application of costs and benefits

Electrification requires more robust treatment

Electrification encompasses more benefit and cost categories

ENVIRONMENTAL IMPACTS

GHG Emissions

- > Air Quality
- > Water
- > Land
- Other Resources

ECONOMIC IMPACTS

- > Productivity
- Product Quality
- Worker Health and Safety
- > Occupant Comfort
- Cost of Service

ENERGY INFRASTRUCTURE

- Avoided Costs
- Grid Flexibility
- Reliability

Leveraging and Extending Energy Efficiency Tests

- Comprehensive view of benefits & costs from all perspectives (societal + customer + utility)
- Applicable for electrification and energy efficiency, whether electric or non-electric
- Quantifies environmental and grid flexibility impacts, using EPRI best practices
- Extends Total Resource Cost (TRC): cross-fuel comparison; non-energy impacts
- Refines Societal Cost Test (SCT): customer and utility impacts; more realistic discount rate

Total Value Test (TVT)

Total Value Test Case Studies

Battery Electric vs. Diesel City Buses

Indoor Agriculture

Residential Water Heating

Topics for Today

Analysis – EPRI's US National Electrification Assessment

US Regional Perspectives

Regulation -- Updated measures of costs and benefits

Minnesota Perspectives

Concluding Remarks

Minnesota Electrification Study with Great River Energy Underway

Scenarios include:

- Reference (with variations on imported power, natural gas price, and end-use technologies)
- Zero-carbon electricity
- 80% economy-wide reduction

Preliminary results directionally consistent with US results, but point out the issues with state-level (rather than national) action.

Topics for Today

Analysis – EPRI's US National Electrification Assessment

US Regional Perspectives

Regulation -- Updated measures of costs and benefits

Minnesota Perspectives

Concluding Remarks

Electrification Appears an Effective (Likely Necessary) Means to Many Goals ... But is Not a Given

Technology Improvement: Cost + Performance

Analyzing Customer Choice

Policy and Market Design: An Economy-wide View

Encouraging Proactive Consumer Behavior

Infrastructure Investment

Fundamentally New Options: Autonomous/Shared Mobility

Communication: Sharing Information and Experience

Together...Shaping the Future of Electricity

Tom Wilson 650-855-7928 twilson@epri.com

